Machine Guarding Risk Assessment

One Approach

RP Calhoun & JJ Brafford
NOG-L Industrial Health & Safety
Risk Assessment

• “The process by which the intended use of the machine, the tasks and hazards, the level of risk are determined”.

 • ANSI B11.0-2010, Safety of Machinery – General Requirements and Risk Assessment

• A future key attribute and skill safety professionals will need to possess

• This presentation details methods used to accomplish this task at Babcock & Wilcox Nuclear Operations Group – Lynchburg, VA (NOG-L)
Topics of Discussion

- Preparing for risk assessments
- Examples of risk assessment methods
- Tips for conducting risk assessments
- Abatement and management of risk
- Sources of help – the “Prevention through Design” (PtD) tool box
- Conclusions based on our experiences
“The Babcock & Wilcox Nuclear Operations Group – Lynchburg site principally manufactures naval reactors for submarines and aircraft carriers”.

As such we cannot provide examples or exact information regarding some of our successes.

USS Nautilus, world’s first nuclear-powered submarine
Getting Started

• Obtain management support
• Assemble an effective “Tool Box”
 ‣ A Prevention through Design (PtD) principle
 ‣ Valuable resources for effective hazard assessment performance, documentation and confirmation of results
 ‣ Several recommendations will be provided
• Choose an analysis method that suits the desired level of detail to demonstrate analysis rationale, results and recommendations
• Prepare for conducting risk assessment
Risk Assessment Preparation

• What are we trying to accomplish?
 ‣ Assure safe use of industrial machinery
 ‣ Protect/maintain valuable resources
 ‣ Reduce product damage
 ‣ Assure effective operation
 ‣ Reduce downtime and maintenance costs
 ‣ Reduce regulatory liability
 ‣ Arrive at an “acceptable” (“The risk level achieved after risk reduction measures have been applied - ANSI B11.0-2010) or “tolerable” risk (“risk that is acceptable for a given task and hazard combination” – ANSI B11.TR3-2000)
Risk Assessment Preparation Cont’d

• Establish assessment limit or depth of analysis
 ‣ NOG-L: Meet OSHA point-of-operation regulations:
 • Fixed barriers
 • Interlocked guards
 • Guarding devices in conformance with appropriate standards;
 – In the absence of specific standards, designed and constructed to
 prevent the operator from having any part of their body in the
 danger zone during operating cycles.
 ‣ Considerations:
 • Risk/reduction benefit
 • Technological feasibility
 • Economic feasibility
 • Durability and maintainability
 • Usability
 • Productivity and quality
Risk Assessment Preparation Cont’d

• Situations requiring risk assessments:
 ‣ Machines that present more than an acceptable risk
 ‣ Personnel exposure to point-of-operation with credence to:
 • Frequency & duration of exposure
 • Number of personnel exposed
 • Hazard avoidance
 • Level of training, skill and experience, etc.
 ‣ Machinery with prior incident history
 ‣ Onsite designed equipment
 ‣ Purchase of used equipment
 ‣ Machines that incorporate presence-sensing devices
Risk Assessment Preparation Cont’d

• Establish a Machine Guarding Committee
 ‣ Chair with authority, Manager of Manufacturing Improvement Engineering
 ‣ Industrial Engineering (Facilities)
 ‣ Electronics and controls expert
 ‣ Product engineering
 ‣ Tooling & design
 ‣ Industrial Health and Safety
 ‣ Appropriate site management
 ‣ Operators and affected personnel
 ‣ Human Performance Employee Teams (HPETs)
Risk Assessment Preparation Cont’d

- Procedure Elements for Performance of RA
 - Applicability & Purpose
 - Process to Conduct Assessments
 - Assessment Methodology and Guidelines
 - Identification of Machine & Process Specifications and Related Hazards
 - Methods to Reduce Risk
 - Regulations, Standards and Other Sources of Information Related to Assessing Machine Guarding
 - Manufacturer’s Machine Assessments
 - Responsibilities
 - Techniques that can be utilized
Risk Assessment Preparation Cont’d

Administrative Procedure for RA Performance

1. Determine Limits of Machinery
2. Identify Tasks & Hazards
3. Estimate Risk

- Has tolerable risk been achieved?
 - Yes: Risk Assessment
 - No: Reduce risk by:
 - Design
 - Safeguarding
 - Protective devices
 - Administrative Controls

- Can hazard be eliminated or reduced?
 - Yes: Reduce risk by:
 - No: Re-evaluate machine limits

- Do other task/hazard combinations exist?
 - Yes: Validate solutions
 - No: Process assessment

Source: ANSI B11.TR3-2000
Some risk assessment preparation methods implemented
Risk Assessment Preparation Cont’d

- MG Committee documentation
 - Presentation of recommendations for compliance

<table>
<thead>
<tr>
<th>Manager & Area</th>
<th>Machine (s/n)</th>
<th>Hazard Site</th>
<th>Recommended Actions</th>
<th>Qty</th>
<th>Material Cost</th>
<th>Guard Fab Hours</th>
<th>Installation Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PT Quagmire Bldg 1</td>
<td>PDQ Lathe</td>
<td>Chuck</td>
<td>Purchase chuck guard #1 (XYZ catalog pp 58)</td>
<td>1</td>
<td>$140</td>
<td>NA</td>
<td>4 hrs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Spindle bore</td>
<td>Spindle bore Cap (B&W fab drwg # 567)</td>
<td>1</td>
<td>$50</td>
<td>8 hrs</td>
<td>1 hr</td>
</tr>
<tr>
<td>Knee Mill</td>
<td>Point-of-op.</td>
<td>Risk assessment required</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td></td>
</tr>
<tr>
<td>PT Quagmire Total</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>$190</td>
<td>8hrs</td>
<td>5 hrs</td>
</tr>
</tbody>
</table>
Risk Assessment Preparation Cont’d

- Site Communication and Recommended Details
 - Importance of assisting the MG Committee obtain an accurate understanding of machine processes
 - Personnel may be asked to describe or demonstrate tasks
 - An opportunity to recommend improvements
 - Committee evaluations designed to provide improvement on several fronts if warranted
 - Advertised a “pilot program” to obtain feedback; an opportunity garner ownership
Risk Assessment Preparation Cont’d

Machine Guarding Pilot & Comment Form for Drill Presses

Purpose: This form is designed to gauge the impact of machine guarding from several perspectives indentified below. The machine pictured to the right shows a proposed guard:
- Shield guard – provides operator protection from the rotating chuck and point-of-operation. The guard is adjustable.

<table>
<thead>
<tr>
<th>Guard Impact (evaluate the categories below)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fire Hazards</td>
</tr>
<tr>
<td>□ Acceptable</td>
</tr>
</tbody>
</table>

Recommendations: Recommendations: Recommendations: Recommendations:

Use back of form if necessary

Overall Evaluation
- □ Acceptable
- □ Unacceptable
- □ Acceptable with recommendation implementation
- □ Other:

Commentator’s Name (Print): Organization & location Phone:

Machine Guarding Committee Review: Date:
Risk Assessment Preparation Cont’d

• Establishing rank (priority) to guard/assess

ANSI/RIA R15.06-1999 format
Conducting Assessments Process

- Responsibilities and Actions:
 - Purchasing/Procurement
 - Machine/Process Owner
 - Occupational Safety & Health (Safety)
 - Machine Guarding Committee
 - Management
 - Employees
Conducting Assessments Process Cont’d

Purchasing:
- Requests hazard documentation/risk assessment (ISO 12100:2010)
- Provides data to machine/process owner

Machine/Process Owner:
- Provides equipment data to safety (materials used/produced; related equipment; interaction with existing processes; supplier services; etc.)
- Risk assessment copy

Safety:
- Reviews data & specifications
- Performs initial risk assessment
- Distributes draft assessment to Machine Guarding Committee (MGC)

MGC:
- Reviews, discusses & approves draft

Safety:
- Acts on recommendations
- Distributes assessment to:
 - Management owners for accuracy and implementation determination
 - Maintenance for installation & maintenance schedules

Management:
- Reviews and distributes assessment to affected employees for comments/buy-in, hazard awareness, training
- Provides feedback to MGC
Conducting Assessments Process Cont’d

MGC:
- Reviews assessment comments
- Schedules meeting to finalize assessment
- Seeks management approval to publish by signature

Management:
- Distributes final assessment report to operators/affected personnel for buy-in
- Implements assessment requirements/recommendations
- Assure machine/equipment is functionally maintained and effective

Employees:
- Utilizes guards, procedures and recommendations

Safety:
- Files & publishes assessment report
- Maintains report

Safety:
Periodically reviews machine guarding effectiveness against assessment report
Machine Guarding Risk Assessment Techniques
Machine Guarding Assessment Techniques

- ANSI Z690.3-2011, “Risk Assessment Techniques”:
 - Annex A – risk assessment comparison, describes relevance of influencing factors (resources, capability, nature and degree of uncertainty, complexity and ability to provide quantitative output
 - Annex B – provides an overview of several techniques, how to use them, process descriptions, outputs, strengths and limitations
Assessment Techniques Continued

- Techniques are subjective, qualitative approach to identify, document and abate or manage machine hazards
- Technique chosen dependent on:
 - The observation of tasks being performed (complexity)
 - Hazards personnel may be exposed to (need to provide specific information or guidance)
 - Best method to accurately identify hazards
 - Providing the best method to document/display recommendations
Assessment Techniques Continued

• The goal of this process is to:
 ‣ Recommend safeguards that will reduce risks to acceptable/tolerable levels or
 ‣ Identify conditions or recommendations requiring management acknowledgement for consideration as an acceptable risk or a risk that requires more attention to resolve.
Assessment Techniques Continued

• Assessment spinoffs:
 ‣ Job Safety Analyses (JSAs)
 ‣ OSHA Voluntary Protection Program (VPP)
 ‣ ISO 18001: Occupational Health and Safety Management
 ‣ ISO 9000 Quality Management System
 ‣ Formal equipment evaluation
 ‣ Operating and maintenance instructions
 ‣ Personnel training, “tool box” meetings and other similar applications.
Assessment Techniques Continued

• Criteria used:
 ‣ Establish a baseline, assuming no safety controls exist by assigning values for appropriate risk category & parameter
 ‣ Risk category and color codes:
 • Negligible
 • Acceptable
 • Moderate
 • Substantial
 • Intolerable

• Parameters:
 • Event outcome
 • Task frequency
 • Severity
 • Likelihood of occurrence
 • Degree of equipment damage
 • Production effects
 • Regulatory compliance
Assessment Techniques Continued

- Parameter examples:

<table>
<thead>
<tr>
<th>Risk Category → Parameter ↓</th>
<th>Negligible</th>
<th>Acceptable</th>
<th>Moderate</th>
<th>Substantial</th>
<th>Intolerable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Injury Severity</td>
<td>None</td>
<td>None</td>
<td>First Aid</td>
<td>Medical Treatment</td>
<td>Lost Time, Full Recovery</td>
</tr>
<tr>
<td>Production Effects</td>
<td>None</td>
<td>Slight recoverable delay</td>
<td>Production interruption</td>
<td>Production shutdown</td>
<td>Production shutdown</td>
</tr>
<tr>
<td>Equipment Damage</td>
<td>No damage</td>
<td>Little to no damage</td>
<td>Damage requiring intervention to resume</td>
<td>Damage that prevents operation</td>
<td>Extensive damage requiring equipment replacement</td>
</tr>
</tbody>
</table>
Assessment Techniques Continued

- **Example:**

<table>
<thead>
<tr>
<th>Job Step/Task</th>
<th>Hazard</th>
<th>Frequency</th>
<th>Severity</th>
<th>Likelihood</th>
<th>Outcome</th>
<th>Abatement Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machine maintenance tasks</td>
<td>Crushing injuries upon contact</td>
<td>Once per month</td>
<td>[Red]</td>
<td>[Red]</td>
<td></td>
<td>Work cell is provided with interlocks that disengages power to all equipment when access is attempted. An emergency stop function results.</td>
</tr>
</tbody>
</table>

Risk Key:

<table>
<thead>
<tr>
<th>Risk Designation:</th>
<th>Negligible</th>
<th>Acceptable</th>
<th>Moderate</th>
<th>Substantial</th>
<th>Intolerable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Color Code:</td>
<td>GREEN</td>
<td>LIGHT GREEN</td>
<td>YELLOW</td>
<td>ORANGE</td>
<td>RED</td>
</tr>
</tbody>
</table>
Assessment Techniques Continued

Military Standard (MIL-STD) 882

<table>
<thead>
<tr>
<th>Probability of Occurrence of Harm</th>
<th>Severity of Harm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Catastrophic</td>
</tr>
<tr>
<td>Very Likely</td>
<td>High</td>
</tr>
<tr>
<td>Likely</td>
<td>High</td>
</tr>
<tr>
<td>Unlikely</td>
<td>Medium</td>
</tr>
<tr>
<td>Remote</td>
<td>Low</td>
</tr>
</tbody>
</table>

Table Definitions:

<table>
<thead>
<tr>
<th>Probability of Occurrence of Harm</th>
<th>Severity of Harm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very Likely – Near certain to occur</td>
<td>Catastrophic: Death or permanent disabling injury or illness. (Unable to return to work). Extensive damage requires equipment replacement</td>
</tr>
<tr>
<td>Likely – May occur</td>
<td>Serious: Permanent and non-reversible injury or illness (able to return to work at some point). Severe damage requiring extensive rework.</td>
</tr>
<tr>
<td>Unlikely – Not likely to occur</td>
<td>Moderate: Permanent and non-reversible minor injury or illness requiring more than first aid (able to return to same job). Damage requiring attention.</td>
</tr>
<tr>
<td>Remote – So unlikely as to be near zero</td>
<td>Minor: No injury or slight injury no more than first aid (little or no lost time). Little to no damage.</td>
</tr>
</tbody>
</table>

Risk:

- High – Requires engineered controls to abate hazard
- Medium – Requires engineered controls and administrative controls as required to abate hazard
- Low – Requires at minimum administrative controls as required to abate hazard
- Negligible - Administrative controls may be adequate
Assessment Techniques Continued

MIL-STD 882 example

<table>
<thead>
<tr>
<th>No.</th>
<th>Process Step and Hazards/ Rationale: Safeguards and/or Concerns</th>
<th>Risk Estimation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Probability</td>
</tr>
<tr>
<td>1.</td>
<td>Operator’s hands/fingers become entangled in power transmission belts and pulleys</td>
<td>Remote</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Severity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Risk Level</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NEGLIGIBLE</td>
</tr>
</tbody>
</table>

Risk Estimation Rationale:

- Guards are installed on ballscrews (bellows), transmission belts and pulleys (metal guard)
- Hazard locations are labeled per ANSI standards
- Machine pre-operation checklist requires guarding verification
Assessment Reports

• A report is generated and submitted to area management covering the following topics:
 ‣ Process description
 ‣ Hazard discussion
 ‣ Risk assessment results
 ‣ Recommendations/requirements
 ‣ List of equipment and methods for implementation of recommendations/requirements

• A living document designed to demonstrate safety and verify effectiveness
Assessment Techniques Continued

• Should risk assessment outcome exceed acceptable category, management must:
 ‣ Decide if recommended assessment rationale and controls are acceptable and;
 ‣ Assume risk for task performance based on the risk assessment rationale and recommended abatement methods
Machine Mods Resulting from Assessment

- Machinery Modification
 - Machine’s manufacturer should be consulted to assure anticipated modifications will not void the warranty and will not create unforeseen hazards or production issues.
 - Any machinery modification should be subject to a risk assessment to assure personnel safety and regulatory compliance is not compromised.
 - New use and care requirements as a result of modifications must be incorporated into operating and maintenance procedures.
Tool Box Applications for RA

- Incorporation of mechanical power press guard opening criteria for universal applications: 29 CFR 1910.217 Table 0-10
 - Guard opening Scale

<table>
<thead>
<tr>
<th>Distance of Opening from POO (inches)</th>
<th>Maximum width of opening (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>½ to 1 ½</td>
<td>¼</td>
</tr>
<tr>
<td>1 ½ to 2 ½</td>
<td>3/8</td>
</tr>
<tr>
<td>2 ½ to 3 ½</td>
<td>½</td>
</tr>
<tr>
<td>3 ½ to 5 ½</td>
<td>5/8</td>
</tr>
<tr>
<td>5 ½ to 6 ½</td>
<td>¾</td>
</tr>
<tr>
<td>6 ½ to 7 ½</td>
<td>7/8</td>
</tr>
<tr>
<td>7 ½ to 12 ½</td>
<td>1 ¼</td>
</tr>
<tr>
<td>12 ½ to 15 ½</td>
<td>1 ½</td>
</tr>
<tr>
<td>15 ½ to 17 ½</td>
<td>1 7/8</td>
</tr>
<tr>
<td>17 ½ to 31 ½</td>
<td>2 1/8</td>
</tr>
</tbody>
</table>

Rockford Systems Inc.
Rockford, IL
Tool Box Applications for RA Continued

• Use of pendants with e-stops
 ‣ Robot teach pendant rationale (ANSI/RIA 15.06, Industrial Robot and Robot Systems Safety Requirements)

• Incorporation of machine “slow” speed control speed < 250 mm/sec (10 in/sec) (ANSI/RIA 15.06)
 ‣ Machine speed/hazard avoidance applied to machine travel
 ‣ Reduced tool changing speeds

• Use of control reliable systems
 ‣ Capability of controls/safeguarding to achieve a safe state in the event of a failure of their safety-related functions
Tool Box Applications for RA Continued

• Use of distance criteria per ANSI B11.19-2010
• Occupying hands through use of controls & devices:
 ‣ Two-hand controls
 ‣ Push-to-run devices
 ‣ Teach pendants
• Implement necessary heights for physical guards criteria
• Operator surveillance
 ‣ Defensive action and control
 ‣ Machine speed/hazard avoidance (distance formulas)
Tool Box Applications for RA Continued

- International Organization for Standardization (ISO) 12100:2010, General Principles for Design – Risk Assessment and Risk Reduction:
 - Provides a framework for safe machines design
 - Allows manufacturers to demonstrate machine’s ability to perform intended functions during life cycle where risk has been adequately reduced
 - Establishes strategy to accomplish objectives
 - “Functional Safety” demonstration
Tool Box Applications for RA Continued

• ISO 12100:2010 step-by-step strategy (in order)
 ‣ Determine limits of machine for intended use and foreseeable misuse
 ‣ Identify hazard and associated hazardous conditions
 ‣ Establish risk for each hazard and associated hazardous condition
 ‣ Evaluate risks and identify risk reduction measures
 ‣ Eliminate hazards or reduce risks

• B&W NOG-L requests information to assure safety and help assure warranty preservation
 ‣ Form letter used to request assessment
Valuable Tool Box Instruments

- Ergonomics: reach limits
 - ANSI B11.19, Performance Criteria for Safeguarding
 - ANSI/RIA 15.06-1999, Industrial Robots and Robot Systems – Safety Requirements
 - CAN/CSA Z434-03(R2013) - Industrial Robots and Robot Systems - General Safety Requirements
Valuable Tool Box Instruments Cont’d

• Machine speeds/physical guards/fixed position:
 ‣ ANSI/RIA 15.06-1999, Industrial Robot and Robot Systems Safety Requirements
 ‣ ANSI B11.19, Performance Criteria for Safeguarding
 ‣ BS EN ISO 13855:2010, Safety of machinery - Positioning of safeguards with respect to the approach speeds of parts of the human body
Valuable Tool Box Instruments Cont’d

- Safe Distance Safeguarding Program for Power Press Brakes
 - OSHA Instruction CPL 2-1.25, Guidelines for Point of Operation of Power Press Brakes
 - Press Brake Safety Compliance Kit, Sheet Metal and Air Conditioning Contractors’ National Association
 - Washington State Department of Labor & Industries WAC 296-806-46508; 46504
Valuable Tool Box Instruments Cont’d

• Minor Servicing and maintenance (routine, repetitive, integral to use)
 ‣ 29 CFR 1910.147 (a)(2)(ii)(B)
 ‣ OSHA Directive CPL02-00-147, The Control of Hazardous Energy – Enforcement Policy and Inspection Procedure
Valuable Tool Box Instruments Cont’d

- General Regulations:
 - OSHA 29 CFR 1910 Subpart O, Machinery and Machine Guarding
 - OSHA 29 CFR 1910 Subpart S, Electrical
Valuable Tool Box Instruments Cont’d

- General Standard References:
 - ANSI B11.0-2010, Safety of Machinery – General Requirements and Risk Assessment
 - ANSI B11.19-2010, Performance Criteria for Safeguarding
 - ANSI/ASSE/ISO Risk Management Standards Z690.1, .2, .3; national adoption of ISO 31000
 - ANSI/ASSE Z590.3-2011, Prevention through Design Guidelines for Addressing Occupational Hazards and Risks in Design and Redesign Processes
Valuable Tool Box Instruments Cont’d

• General Standard References Continued:
 - ANSI B11 Series, Standards for Machine Tools Safety Requirements for specified machines
 - NFPA 79, Electrical Standard for Industrial Machinery
Valuable Tool Box Instruments Cont’d

- Guide References (Hazard descriptions, device selection, use and application):
 - *Guidelines for Safe Machinery, Six Steps to a Safe Machine*; SICK Sensor Intelligence
 - *OSHA 3170-2R 2007, Safeguarding Equipment and Protecting Employees from Amputations*
 - Province of Manitoba Workplace Safety and Health Division/Work Safe BC, *Guideline For Safe Machinery and Equipment*. Winnipeg, Manitoba
Valuable Tool Box Instruments Cont’d

• Guide References (Hazard descriptions, device selection, use and application) continued:

 ‣ *Guide to Safeguarding Common Machinery and Plant*; Workplace Health and Safety Queensland; Government of Queensland Australia

 ‣ *Machine Guarding Major Workplace Hazards*; Government of South Australia

Valuable Tool Box Instruments Cont’d

- Guide References (Machine Inspection and Guarding Options):
 - Rockford Systems, Inc. safeguarding catalogs by machine category
 - Lovegreen Risk Management LLC, Machine Safety Surveys
 - Flexbar Machine Corporation Machine Safety Guard System Catalog
 - Siemens Safety Integral Safety Applications
 - Rockwell Automation Safety Products Catalog
 - Ormron Scientific Technologies Inc. Machine & Process Safeguarding (Two volumes)
Conclusions

- Must have resources and management support
- Risk assessment methods and processes must be established to assure uniformity
- Must be creative in some situations
- Need to be a good listener to identify needed details
- Need to be a salesperson
- Hopefully this presentation will provide some insight and assistance in developing or enhancing risk assessment processes for machine guarding
YOUR FEEDBACK IS IMPORTANT!

Complete your session evaluation utilizing any of the following methods:

• Access the survey directly from your Safety 2014 App
• Wait to receive an email reminder at the end of each day
• Visit one of the ASSE Cyber Centers to access the link directly from the web version of the Safety 2014 App